
International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015                                                                                     834 
ISSN 2229-5518  

IJSER © 2015 
http://www.ijser.org  

Power-aware Meta-heuristic Core Mapping 
Approaches for Network on Chips 

Mehdi Taassori, Sener Uysal  
Department of Electrical and Electronic Engineering, Eastern Mediterranean University, Famagusta, Mersin 10, Turkey 

 

Abstract— Network on Chip (NoC) has been introduced to support communications demand in System on Chip (SoC). Power 
consumption is a controversial issue in on-chip interconnections. Due to this issue and limited resources in NoCs such as wires, switches 
and virtual channels, mapping problem which are dealing with obtaining an appropriate position in topology, plays crucial role in design of 
NoCs. In this paper, we utilize Genetic Algorithm (GA) and Simulated Annealing (SA) as meta-heuristic algorithms to solve the Quadratic 
Assignment Problem (QAP) and map the tasks to the cores on mesh-based NoCs. Experimental results reveal that meta-heuristic 
algorithms not only reduce the power dissipation but also improve the performance in NoCs.     

Index Terms— Power consumption; Mapping; Meta-heuristic; Genetic Algorithm; Simulated Annealing; Network on Chip.   

——————————      —————————— 

1 INTRODUCTION                                                                     
S technology shirinked, designers use many intellectual 
property (IP) on a System on Chip (SoC). With this trend 
the communication in SoC has a great impact on power 

consumption and transmission delay in on-chip interconnec-
tion [1]. Network on Chip (NoC) has been recommended as a 
solution for SoC’s communication problems [2].    

With the advances in technology, the power dissipation has 
become a major issue [1] in NoCs which is composed of link 
and router’s power.  

Due to the importance of power dissipation and limited re-
sources in NoCs such as wires, switches and virtual channels, 
mapping problem tackles with finding an appropriate position 
in topology, plays crucial role to design an optimal layout for 
NoCs [3].  

In [4], Quadratic Assignment Problem (QAP) which is clas-
sified as NP-hard problem is used to solve the layout problem. 

Researchers in [3] addressed an analythical optimization 
approach to map the tasks to the cores on NoCs. In this paper, 
we use Genetic Algorithm (GA) and Simulated Annealing 
(SA) as meta-heuristic methods to solve QAP and map the 
tasks to the cores on the mesh based NoCs. The goal of this 
research is not only to reduce the power consumption but also 
to improve the performance in NoCs.  

2 LITERATURE REVIEW 
Analytical and meta-heuristic algorithms are introduced to 
solve NP-hard problems [4-8]. Researchers in [3], [9-16], pro-
posed different analytical and meta- heuristic approaches to 
minimize the power consumption in NoCs. 
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The authors in [3] proposed a mathematical optimization 
method to map the tasks to the cores in NoCs under link 
length and bandwidth constraints. They presented a linearized 
form of QAP to solve the layout problem. Their objective was 
power reduction that can be achieved through mapping along 
with finding the optimum number of routers and virtual 
channels in NoCs. In [15], a genetic algorithm with the goal of 
power and router reduction in NoC architectures is presented. 
Another heuristic method for mapping the tasks to the cores 
on mesh-based NoC is introduced in [11] by minimizing the 
communication delay under bandwidth constraint.   

Different mapping algorithms for mesh-based NoC are pre-
sented in [11], [15], [17-20].    

3 MATHEMATICAL MODEL 
To solve the mapping problem in NoCs a mathematical ap-
proach as Quadratic Assignment Problem (QAP) is presented 
[3]. QAP, which is used in engineering sciences [21, 22], is a 
useful analytical optimization algorithm. It is categorized as 
NP-hard problem [21], [23] and consequently non-polynomial 
CPU running time is very high, therefore, researchers use me-
ta-heuristic algorithms [23, 24]. We used QAP to map the tasks 
to the cores in NoCs.  
The parameters and variables in the mathematical model are 
described as follows: 

n: The number of tasks and cores of NoC. 
i,j: Indexes of the tasks. 
k,l: Indexes of the cores. 
Xik: Binary variable which is 1 if task i is mapped to core k, 
otherwise, it is zero. 
fij: Bandwidth between tasks i and j. 
dkl: Distance between cores k and l. 

 
 

A 
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The minimization objective function (1) evaluates summation 
of distances for all pairs of cores which is weighted by their 
bandwidth. The constraint (2) emphasises that only 1 task can 
be mapped to each core and constraint (3) emphasises that 
only 1 core can be mapped to each task. The constraint (4) de-
fines binary nature of the X variables. 

 

3.1 Genetic Algorithm (GA) 
QAP is a combinatorial optimization problem and GA is a 
population based evolutionary algorithm which is used to 
solve combinatorial optimization problems [5], [25-29]. GA to 
solve the QAP starts with a population that is generated ran-
domlly (chromosomes). Any solution should be evaluated by 
the objective function (1). Then, percentage of the generated 
population (Pr%), that includes the worst solution, is random-
ly selected to regenerate and one or some of the remaining 
solutions are selected as parents. Parents using crossover and 
mutation operators, generate new solutions by the name of 
child or offspring. The objective function (1) assesses the new 
solution and if the objective function value is better than the 
worst solution then the worst solution is replaced with the 
new one. Regeneration, selection mechanism, offspring gener-
ation, eveluation process and replacement all together are one 
iteration in GA. After limited number of iterations the GA is 
terminated. In the final population, the best solution is select-
ed as a solution of the GA.  

 

3.1.1 Population of GA 
Population of  GA that is an array of integer numbers, is de-
picted in Figure 1. As shown in Figure 1, the value and index 
of element of array illustrate the number of tasks and cores, 
respectively. As an example, task 3 is mapped to the core 7. 
This is an example for VOPD benchmark; hence, 12 tasks are 
mapped to the 12 cores. 

4 9 2 7 10 1 3 6 11 5 12 8Task

Core 1 2 3 4 5 8 9 121176 10

 
Fig. 1. Solution representation of GA. 

3.1.2 Neighbor generation for GA 
A percentage of the population (Pr%) is regenerated. Thus, a 
new solution is produced instead of each solution. Then from 
the remaining solutions the offspring solution is generated by 

applying the Partial Mapped Crossover [30, 31] and swap op-
erator. Firstly, a pair of parents from the (1-Pr)% of the popu-
lation is selected by the selection mechanism of the parents. 
Secondly, the Partial Mapped Crossover is applied on the se-
lected parents to find an offspring. Finally, swap operator is 
used on offspring to generate final offspring.   

 

3.1.3 Selection mechanism of parents 
The fitness value which is defined as 1/objective function is as-
signed to each solution of the population in each iteration of 
GA. Due to the minimization type of the objective function (1), 
the better solution has greater fitness value. The selection 
mechanism of the parents is Roulette–Wheel selection [5], [25, 
26]. In this approach the better solution is a candidate to be 
selected as parent.  
 

3.2 Simulated Annealing (SA) 
Simulated annealing that is introduced by [32] as a meta-
heuristic optimization algorithm is able to solve combinatorial 
optimization problems. SA has been suggested to solve layout 
problem [33-37].  

SA is an iterative improving algorithm to produce a solu-
tion randomly. The generation process is used to generate a 
new solution namely neighbor solution. In general, neighbor 
solution is founded by swap operator.   
SA algorithm uses the following parameters: 

 
 T0: Initial temperature 
 r: Cooling ratio such that 0≺r≺1 
 Tf : Final temperature 
 Nit : Number of iterations 
 xˋ : Neighbor solution  
 x : Initial solution 

 
To solve the QAP, SA considers an initial solution (x) and 
temperature (T0). Under this condition a new solution that is 
the neighbor solution is generated (xˋ ). (xˋ ) is evaluated ac-
cording to the objective function (1).  
The same temperature is used for this neighbor solution and 
the solution is evaluated for a limited number of iterations 
(Nit). In the next step temperature is cooled down based on the 
cooling ratio (r) such that 0≺r≺1 and in the new temperature 
the same process is done. This algorithm continues untill the 
final temperature (Tf).   
 

3.2.1 Solution representation in SA 
Solution representation in SA is an array of integer numbers as 
shown in Figure 1.  

3.2.2 Neighbor generation mechanism of SA 
Neighbor solution in SA is generated by a double swap opera-
tor. In this operator two integer random number form the in-
terval [1,n] is generated where n is the number of tasks or 
cores. In the array of the solution, the numbers of the tasks 
that are generated randomly are swapped. The obtained array 
is the neighbor solution. 
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4 EXPERIMENTAL RESULTS 
We compared meta-heuristic algorithms with five bench-
marks; H.263 video encoder, H.263 video decoder, MP3 audio 
encoder , Video object plane decoder (VOPD) and Multi-
window display (MWD) [14].  
Table1 shows the benchmark’s characteristics. In the third and 
forth column the number of tasks and cores are shown, repec-
tively.  

 
TABLE 1 

BENCHMARKS’ CHARACTERISTICS 
Graph Graph ID Task Core 

H.263 encoder G1 8 11 

MWD G2 12 13 

VOPD G3 12 15 

H.263 enc MP3 enc G4 14 19 

H.263 enc H.263 dec G5 15 19 

 
The meta-heuristic algorithms were coded in Matlab and run 
on a PC with an Intel Core 2 Duo 2.53 GHz processor and 4.00 
GB RAM. 

The parameters level of GA is considered as follows: 
 
 Number of population: 50, 150, 300. 
 Pr: 50, 65, 80. 
 Number of iterations: 200, 400, 600. 

 
GA with 27 combinations which are taken from the above pa-
rameters level is run. Then among the solutions the best one is 
selected as the best layout. 

The parameters level of SA is considered as follows: 
 

 Initial temperature: 50, 150, 300. 
 Cooling ratio: 0.85, 0.95, 0.99. 
 Number of iterations: 50, 250, 400. 
 Final temperature: 5. 

 
SA with 27 combinations which are taken from the above pa-
rameters level is run. Then among the solutions the best one is 
selected as the best layout. 

The power consumption of NoC is summation of link pow-
er and router’s power dissipation [10]. Link power includes 
self and coupling capacitances that is calculated by 
Plink=αCV2ddf, where α is the switching activity, C is self and 
coupling capacitance, the voltage of the power supply is Vdd 
and f is the clock frequency. The benchmarks are implemented 
in 65 nm technology. According to the critical path of the sys-
tem, frequency is 500 MHz. Regarding to the International 
Technology Roadmap for Semiconductors [1], Vdd is 1 Volt. 
The length of the wires considered as 2 mm while the self and 
coupling capacitance of the wire links considered as 0.2 
pF/mm and 0.6 pF/mm, respectively. Transitions of the wires 
are counted by Modelsim and power of the routers is evaluat-
ed with power compiler from Synopsys. 

The results of the power consumption for GA and SA com-
pared to the non-optimized NoC are depicted in Figure 2. In 
this Figure benchmarks are indicated in horizontal axis and 
the normalized value of power dissipation is indicated in the 

vertical axis. The vertical axis in Figure 2 is normalized to the 
corresponding power consumption by the non-optimized lay-
out.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. Power comparison of non-optimized, GA and SA. 

On an average GA and SA consumes 58.7%, and 60.2% 
lower power dissipation compared to the non-optimized NoC, 
respectively.    
Latency is compared in Figure 3. Benchmarks are indicated in 
the horizontal axis and normalized value of latency is demon-
strated in the vertical axis which is normalized to the corre-
sponding latency by the non-optimized layout.  

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Latency comparison of non-optimized, GA and SA. 

As shown in Figure 3, on an average GA and SA improve 
the latency 34.5%, and 33.1% compared to the non-optimized 
NoC, respectively.    

5 CONCLISION 
In this paper, meta-heuristic algorithms such as GA and SA 
are used to solve QAP and map the tasks to the cores on mesh-
based NoCs. Experimental results show that not only the 
power consumption is decreased but also the performance of 
the NoC is improved.  
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